Review of one-dimensional and two-dimensional nanostructured materials for hydrogen generation.
نویسندگان
چکیده
Hydrogen is an attractive alternative to fossil fuels in terms of environmental and other advantages. Of the various production methods for H2, photocatalysis requires further development so that it can be applied economically on an industrial scale. One- and two-dimensional nanostructures in both pristine and modified forms have shown great potential as catalysts in the generation of H2. We review here recent developments in these nanostructure catalysts and their efficiency in the generation of H2 under UV/visible/simulated solar light. Despite much research effort, many photocatalysts do not yet meet the practical requirements for the generation of H2, such as visible light activity. H2 production is dependent on a variety of parameters and factors. To meet future energy demands, several challenges in H2 production still need to be solved. We address here the factors that influence the efficiency of H2 production and suggest alternatives. The nanostructures are classified based on their morphology and their efficiency is considered with respect to the influencing parameters. We suggest effective ways of engineering catalyst combinations to overcome the current performance barriers.
منابع مشابه
ONE-DIMENSIONAL TREATMENT OF HYDROGEN BOND PART1 THE CASE OF THE LINEAR HYDROGENBOND
The one-dimensional model of Lippincott and Schroeder for hydrogen bond has Been re-examined and it has been shown that O-H bond distance depends on repulsive van der Waals and attractive electrostatic potentials.it has been shown that constant b in the van der Waals repulsion potential is not transferable to all hydrogen bonds. The possibility of obtaining the semi-empircal parameters i...
متن کاملONE-DIMENSIONAL TREATMENT OF HYDROGEN BOND PART 2
The potential function of Lippincott and Schroeder for linear hydrogen bond has been re-examined and extended to nonlinear hydrogen bond. The parameters originally introduced to the potential function by Lippincott and Schroeder have been determined from the structural parameters such as 0.. .Odistance 0-H bond distance, H.. .O distance and HOO angle. Thevalidity of harmonic oscillator appr...
متن کاملComparative Study of Nanostructured Zr-Fe2O3 and CNT Modified Zr-Fe2O3 Thin Films for Photo Electrochemical Generation of Hydrogen
Nanostructured hematite thin films are doped with zirconium successfully and also modified by introducing CNT using sol-gel method for their implementation as photo-electrode in photo-electrochemical (PEC) cell for hydrogen generation. XRD, UV-visible spectroscopy and PEC study techniques are used to characterize the thin films. The PEC responses of thin films are improved by introducing carbon...
متن کاملHydrogen dangling bonds induce ferromagnetism in two-dimensional metal-free graphitic-C3N4 nanosheets† †Electronic supplementary information (ESI) available: Experimental and characterization. See DOI: 10.1039/c4sc02576h Click here for additional data file.
Ferromagnetic two-dimensional (2D) ultrathin nanosheets hold great promise for next generation electronics. Ferromagnetic metal-free materials that usually possess only an s/p electronic configuration with weak spin–orbit coupling and a large spin relaxation time, would play an important role in constructing future spintronic devices. However, the absence of an intrinsic spin ordering structure...
متن کاملSynthesis of 3D nanostructured metal alloy of immiscible materials induced by megahertz-repetition femtosecond laser pulses
: In this work, we have proposed a concept for the generation of three-dimensional (3D) nanostructured metal alloys of immiscible materials induced by megahertz-frequency ultrafast laser pulses. A mixture of two microparticle materials (aluminum and nickel oxide) and nickel oxide microparticles coated onto an aluminum foil have been used in this study. After laser irradiation, three different t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 17 5 شماره
صفحات -
تاریخ انتشار 2015